Purification and Characterization of an Extracellular, Thermo-Alkali-Stable, Metal Tolerant Laccase from Bacillus tequilensis SN4
نویسندگان
چکیده
A novel extracellular thermo-alkali-stable laccase from Bacillus tequilensis SN4 (SN4LAC) was purified to homogeneity. The laccase was a monomeric protein of molecular weight 32 KDa. UV-visible spectrum and peptide mass fingerprinting results showed that SN4LAC is a multicopper oxidase. Laccase was active in broad range of phenolic and non-phenolic substrates. Catalytic efficiency (kcat/Km) showed that 2, 6-dimethoxyphenol was most efficiently oxidized by the enzyme. The enzyme was inhibited by conventional inhibitors of laccase like sodium azide, cysteine, dithiothreitol and β-mercaptoethanol. SN4LAC was found to be highly thermostable, having temperature optimum at 85°C and could retain more than 80% activity at 70°C for 24 h. The optimum pH of activity for 2, 6-dimethoxyphenol, 2, 2'-azino bis[3-ethylbenzthiazoline-6-sulfonate], syringaldazine and guaiacol was 8.0, 5.5, 6.5 and 8.0 respectively. Enzyme was alkali-stable as it retained more than 75% activity at pH 9.0 for 24 h. Activity of the enzyme was significantly enhanced by Cu2+, Co2+, SDS and CTAB, while it was stable in the presence of halides, most of the other metal ions and surfactants. The extracellular nature and stability of SN4LAC in extreme conditions such as high temperature, pH, heavy metals, halides and detergents makes it a highly suitable candidate for biotechnological and industrial applications.
منابع مشابه
An extracellular thermo-alkali-stable laccase from Bacillus tequilensis SN4, with a potential to biobleach softwood pulp
Degradation of residual lignin in kraft pulp by chemical bleaching is implicated in causing environmental pollution. The use of thermo- and alkali-tolerant bacterial laccases is considered to be important biological alternative to chemical processing. Laccases from Bacillus species have shown promise in this respect but their intracellular/spore bound presence make their industrial application ...
متن کاملPurification, biochemical characterization and dye decolorization capacity of an alkali-resistant and metal-tolerant laccase from Trametes pubescens.
Extracellular laccase (Tplac) from Trametes pubescens was purified to homogeneity by a three-step method, which resulted in a high specific activity of 18.543 Umg(-1), 16.016-fold greater than that of crude enzyme at the same level. Tplac is a monomeric protein that has a molecular mass of 68 kDa. The enzyme demonstrated high activity toward 1.0mM ABTS at an optimum pH of 5.0 and temperature of...
متن کاملPurification and Characterization of a Novel Thermostable and Acid Stable α-Amylase from Bacillus Sp. Iranian S1
This study reports the purification and biochemical characterization of thermostable and acidic-pH-stable α-amylase from Bacillus sp. Iranian S1 isolated from the desert soil (Gandom-e-Beryan in Lut desert, Iran). Amylase production was found to be growth associated. Maximum enzyme production was in exponential phase with activity 2.93 U ml-1 at 50°C and pH 5. The enzyme was purified by isoprop...
متن کاملخالصسازی آنزیم لاکاز قارچ Trametes و تعیین خصوصیات فیزیکوشیمیایی لاکاز نوترکیب: یک مطالعه آزمایشگاهی
Background and Objectives: Laccase is the most abundant member of protein family that catalyzes the oxidation of substituted phenols. Laccases are used as biocatalysts for decolorization and bleaching in dye industries, detoxification in environment, and juice clarification in food industries. The present study aimed at producing recombinant laccase, purifying with high yield and fold, and char...
متن کاملProduction of Extracellular Protease and Determination of Optimal Condition by Bacillus Licheniformis BBRC 100053 (RESEARCH NOTE)
The production of protease by Bacillus licheniformis BBRC 100053 was studied. The most appropriate medium for the growth and protease production is composed of: lactose 1%, yeast extract 0.5%, peptone 0.5%, KH2PO4 0.1%, MgSO4.7H2O 0.02%. Enzyme production corresponded with growth and reached a maximums level (589 U/ml) during the stationary phase at 35°C, pH equivalent to 10 and with 150 rpm af...
متن کامل